PHYSICS (HONS.) 2019-20 SEMESTER – I (revised syllabus)

				July	19 – December 19				
Pape r	Core Course - 1	No of Lecture	Faculty	Paper	Core Course - 2	No of Lecture	Facult y	Internal Assessment (by College)	Parent Teacher Meeting
PHS- A- CC-	Mathematical Physics I	60		PHS- A-CC- 1-2TH	Mechanics (Theory)	60		(3) 33 383)	3
1- 1TH	1. Calculus	20	SDR		1. Fundamentals of Dynamics	12	BC		
	2. Vector Algebra and Vector Calculus	25	GDP		2. Work and Energy	8	BC	3 rd week of November	1 st week of December
	3. Matrices	15	SN		3. Gravitation and Central Force Motion	10	SD		
				1	4. Non-Inertial Systems	12	SN		
]	5. Rotational Dynamics	12	SN		
					6. Fluid Motion	06	SD		
PHS- A-	Mathematical Physics - I (Practical)	60	SN+	PHS- A-CC-	Mechanics (Practical)	60			
CC- 1-1P	1. Introduction to plotting graphs with Gnuplot	09	SDR	1-2P	1.Moment of Inertia & Modulus of Rigidity		BC + GDP		
	2. Introduction to programming in python:				2. Moment of Inertia of a Flywheel			3 rd week of November	1 st week of December
	(a) Introduction	08			3. To determine the Young modulus, modulus of rigidity and Poisson ratio of the material of a wire by Searle's Dynamic method.				

(b) The python iterables data type	15	4. To determine the value of g using Bar Pendulum.		
(c) Problems and applications	28	5. To determine the height of a building (or a suitable vertical height) using sextant.		
		6. Determination of Young's modulus of the material of a beam by the method of flexure.		

PHYSICS (HONS.) 2019-20 SEMESTER – II (revised syllabus)

				Jan	uary 20 – June 20				
Pape r	Core Course - 3	No of Lecture	Faculty	Paper	Core Course - 4	No of Lecture	Facult y	Internal Assessment	Parent Teacher
7770		S		2770		S		(by College)	Meeting
PHS-	Electricity and	60		PHS-	Waves and Optics	60			
A-	Magnetism (Theory)			A-CC-	(Theory)			_	
CC- 2-3-	1. Dirac delta function and it's properties	03	SN	2-4-TH	1. Oscillations	08	BC		
TH	2. Electrostatics	12	SN		2. Superposition of Harmonic oscillations	04	BC	3 rd week of	1 st week of
	3. Dielectric properties of matter	06	SN		3. Wave Motion	04	BC	November	December
	4. Method of Images	04	SN		4. Superposition of Harmonic waves	09	BC		
	5. Electrostatic Energy	03	SN		5. Wave Optics	04	GDP		
	6. The Magnetostatic Field	10	SD		6. Interference	10	GDP		
	7. Magnetic properties of matter	07	SD		7. Interferometers	05	GDP		
	8. Electro-magnetic induction	07	SD	-	8. Diffraction	16	GDP		
	9. Electrical circuits	08	SD						
				1		I.			
PHS-	Electricity and	60		PHS-	Waves and Optics	60			
A-	Magnetism		SN	A-CC-	(Practical)				
CC-	(Practical)			2-4-P					
2-3-P	1. Introduction and				1. To determine the		BC +		
	Overview				frequency of an electric		GDP		
					tuning fork by Melde's				
					experiment and verify λ^2 –			3 rd week of	1 st week of
					T law.			November	December
	2. Basics of scientific				2. To study the variation of				
	computing				refractive index of the				
					Material of a prism with				

	wavelengths and hence the Cauchy constants using mercury/helium source.
3. Errors and error Analysis	3. To determine wavelength of sodium light using Fresnel Biprism.
4. Introduction to plotting graphs with Gnuplot / QtiPlot (or some other GUI based free software like Grace, Origin etc.)	4. To determine wavelength of sodium light/radius of plano convex lens using Newton's Rings.
5. Introduction to programming in python:	5. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
6. Programs	6. Measurement of the spacing between the adjacent slits in a grating by measuring sinθ vs graph of a certain order of grating spectra.

PHYSICS (HONS.) 2019-20 SEMESTER – III July 19 – December 19 Paper Core Course –

				July 1	19 – December 19				
Pape r	Core Course - 5	No of Lectur es	Facul ty	Paper	Core Course - 6	No of Lectur es	Facult y	Internal Assessment (by College)	Parent Teacher Meeting
PHS- A-	Mathematical Physics - II (Theory)	60		PHS-A- CC-3-6-	Thermal Physics (Theory)	60			
CC- 3-5-	1. Fourier Series	10	SD	TH	1. Introduction to Thermodynamics	25	GDP		
TH	2. Frobenius Method and Special Functions	20	SD		2. Thermodynamic Potentials	15	SDR	3 rd week of	1 st week of
	3. Some Special Integrals	10	GDP		3. Kinetic Theory of Gases	15	BC	November	December
	4. Variational calculus in physics	10	SN		4. Conduction of Heat	05	SDR		
	5. Partial Differential Equations	10	FK						
PHS-	Mathematical Physics	60	SN+	PHS-A-	Thermal Physics	60	FK +		
A-CC- 3-5-P	- II (Practical) 1. Introduction to Numerical computation using numpy and scipy.		GDP	CC-3-6- P	(Practical) 1. Verification of Stefan's law using a torch bulb.		GDP		
	2. Solution of Linear system of equations by Gauss elimination method and Gauss Seidel method.				2. Determination of the coefficient of thermal expansion of a metallic rod using an optical lever.			3 rd week of November	1 st week of December
	3. Diagonalization of matrices, Inverse of a matrix, Eigen vectors, eigen values problems				3. Calibration of a thermocouple by direct measurement of the thermo-emf using operational amplifier and the constants.				
	4. Generation of Special				4. Calibration of a				

functions using User	thermocouple by direct
defined functions	measurement of the
	thermo-emf using
	potentiometer and the
	constants. [One end in ice
	and another end at water
	bath which to be heated.
5. Root nding:	5. Calibration of
Bisection and Newton-	thermocouple [one end at
Raphson method.	room temperature other end
	in the oil bath] and
	determination of boiling
	point of water.
6. Interpolation by	6. To determine the
Lagranges method.	Coefficient of Thermal
	Conductivity of a bad
	conductor by Lee and
	Charlton's disc method.
7. Numerical	7. To determine the
dierentiation - forward	Temperature Coefficient of
and backward dierence	Resistance by Platinum
formulae.	Resistance Thermometer
	(PRT).
8. Numerical integration	()
- trapezoidal and	
simpsons rule.	
9. Solution of ODE:	
First order Differential	
equation - Euler's	
method.	
10. Basic 3D graph	
plotting.	
prounig.	

Paper	Core Course - 7	No of Lectur es	Facul ty	Paper	Skill Enhancement Courses – SEC-A	No of Lectur es	Facult y		Parent Teacher Meeting
PHS- A-CC- 3-7-	Digital Systems and Applications (Theory)	60		PHS-A- SEC-A- TH	Electrical Circuits and Network Skills - (Theory)	30			
TH	1. Integrated Circuits	05	BC		1. Basic Electricity Principles	3	SD		
	2. Digital Circuits	15	BC		2. Understanding Electrical Circuits	3	SD	3 rd week of November	1 st week of December
	3. Boolean algebra	05	FK		3. Electrical Drawing and Symbols	5	SD		
	4. Data processing circuits	05	SDR		4. Generators and Transformers	4	GDP		
	5. Circuits	05	SDR		5. Electric Motors	3	GDP		
	6. Sequential Circuits	05	SDR		6. Solid-State Devices	3	GDP		
	7. Timers	05	GDP		7. Electrical Protection	4	GDP		
	8. Shift registers	05	GDP		8. Electrical Wiring	5	GDP		
	9. Counters (4 bits)	05	GDP						
	10. Computer Organization	05	SN						
			•	1	1	-1	1	1	
PHS- A- CC-	Digital Systems and Applications (Practical) 1. To design OR & AND	60	BC						
3-7-P	logic with diode and resistor. Basic logic gates with								
	Transistors. To verify the logics by any type of								
	universal gate NAND/NOR.								
	2. Formation of different combinational problems by construction of Truth Table and								

implementation using basic logic gates.				
3. Construction of half adder and full adder				
4. Construction of half subtractor, full				
subtractor, adder- subtractor using				
full adder IC 5. Construction of FF				
circuits using NAND gates.				
6. Construction of 4 bit shift registers (serial &				
parallel) using D type FF IC.				
7. Construction of astable multivibrator				
using 555 Timer.				

PHYSICS (HONS.) 2019-20 SEMESTER – IV January 20 – June 20 **Core Course - 8** No of Facul **Paper** Core Course - 9 No of **Facult** Internal Parent Pape Lectur | y Assessment Teacher Lectures ty (by College) Meeting es Elements of Modern 60 PHS-Mathematical 60 PHS-A-**Physics - III CC-4-9-**Physics (Theory) **A-**CC-TH(Theory) 4-8-1. Complex Analysis 15 SN 1. Unit 1 15 SD TH 2. Integrals Transforms 15 SN2. Unit 2 15 SD 3rd week of 1st week GDP 10 SN 15 3. Introduction to 3. Unit 3 November of probability Coordinates 4. Special theory of 20 SD 4. Unit 4 15 GDP Decembe r Relativity PHSA-**Elements of Modern** PHS-**Mathematical Physics** 60 60 SN**CC-4-9-**- III (Practical) **Physics (Practical)** Α-CC-1. Solution of P 1. Measurement of Plank 4-8-P ODE/PDE GDP+ constant using LED 2. Dirac-delta function 2. Determination of SD ionization potential of 3rd week of 1st week Mercury 3. Determination of e/m by November 3. Fourier series Decembe using bar magnet. 4. Frobenius method 4. To study the r photoelectric effect: and special functions. variation of photocurrent versus intensity and wavelength of light. 5. Evaluation of 5. To determine the trigonometric functions wavelength of H-alpha e.g. $\sin\theta$. Given emission line of Hydrogen Bessel's function at N atom

points find its value at an intermediate point.

6. Complex analysis	6. To show the tunneling effect in tunnel diode using
	I-V characteristics.
7. Integral transform	7. To determine (1) wavelength and (2) angular spread of He-Ne laser/ solid state laser using plane diffraction grating.
8. Introduction to OCTAVE	

Core Course - 10 No of Skill Enhancement No of Facult Pape Facul **Paper** Internal Parent Courses – SEC-B Lectur | y Teacher Lectures ty Assessment r (by College) Meeting es 30 PHS-**Analog Systems and** 60 PHS-A-Renewable Energy and **A**-**Applications (Theory)** SEC-B-**Energy Harvesting -**CC-TH (Theory) 4-10-1. Semiconductor Diodes 5 BC 1. Fossil fuels and 5 BC TH Alternate Sources of energy 3rd week of 1st week 2. General discussion of 10 2. Solar energy BC BC5 bound states in an November of arbitrary potential Decembe r 3. Bipolar Junction 3. Wind Energy harvesting 10 BC4 BCtransistors 4. Field Effect transistors 10 BC 4. Ocean Energy 4 GDP 5.(a) to (c) Amplifiers 10 BC 5. Geothermal Energy 3 GDP 5.(d) to (g) Amplifiers 15 GDP 6. Hydro Energy 3 GDP 7. Piezoelectric Energy 3 GDP harvesting 8. Electromagnetic Energy GDP 3 Harvesting

PHS- A- CC-	Analog Systems and Applications (Practical)	60	BC			
4-10- P	1. To study the reverse characteristics of Zener diode and study the load and line regulation.					
	2. To study the static characteristics of BJT in CE Conguration.					
	3. To designa CE transistor amplifier of a given gain (mid-gain) using voltage divider bias					
	4. To study the frequency response of the BJT amplfier in CE mode.		-			
	5. To study the static characteristics of FET.					
	6. To study OPAMP - inverting amplifier, non-inverting amplifier, adder, subs-tractor,					
	comparator, integrator, differentiator. 7. To design a Wien				_	
	bridge oscillator for given frequency using an op-amp					

				.PHYSICS (HONS.) 2019-20 Second Year (1+1+1-System										
Pape r	First Term July 19 – Oct 19	No of Lectur	Facul ty	Second Term Nov 19 – Jan 20	No of Lectu	Facu lty	Third Term Feb 20 - June 20	No of Lectur	Fac ulty					
III	Unit-I	CS		Unit-I	105		Unit-I	CS	+					
	1. Electronics II	10		1. Electronics II	13		1. Electronics II	07						
	i) Amplifier	05	BC	iii) OP-AMP	05	BC	v) Sequential logic	03	BC					
	ii) Oscillators	05	BC	iv) Combinational logic	05	BC	vi) Communication principle	04	BC					
				v) Sequential logic	03	BC								
	2. Electricity and Magnetism	11		2. Electricity and Magnetism	10		2. Electricity and Magnetism	09						
	i) Magnetic effect of steady current	11	SD	ii) Field and Magnetic material	10	SD	iii) Electromagnetic induction	09	SD					
	Unit-II			Unit-II			Unit-II							
	1. Electrostatics	11		1. Electrostatics	14		1. Electrostatics	04						
	i) Units and dimensions	03	SDR	iii) Multipole expansion	07	SDR	v) Electrical image	04	SDR					
	ii) Gauss' law	08	SDR	iv) Dielectrics	07	SDR								
	2. Wave and Optics	10		2. Wave and Optics	12		2. Wave and Optics	08						
	i) Interference of light waves	10	BC	ii) Diffraction of light waves	12	SD	iii) Polarization	08	SD					
IVA	Unit-I Unit-I Unit-I													
IVA	1. Quantum Mechanics I	10		1. Quantum Mechanics I	12		1. Quantum Mechanics I	08						
	i) Old quantum theory	06	GDP	iI) Basic quantum mechanics Compton effect	08	GDP	iii) Basic Postulates of QM (Cont.)	08	GD P					
	ii) Basic quantum mechanics up to Double slit expt.	04	GDP	iIi)Basic Postulates of QM	04	GDP								
	2. Thermal Physics II	11		2. Thermal Physics II	13		2. Thermal Physics II	11						
	i) Basic concepts	03	SN	ii) 1 st law of Thermodynamics part-II	03	SN	iv) Thermodynamic functions	05	SN					
	ii) 1 st law of Thermodynamics part-I	08	SN	iii) 2 nd law of Thermodynamics	10	SN	v) Change of state	06	SN					

				HYSICS (HONS.) 2019-20					
D.	D* 4.60	NT C		hird Year (1+1+1-System)	NI C	ъ 1	701 · 170	NT C	- I
Pape	First Term	No of	Facul	Second Term	No of	Facul		No of	Facul
r	July 19 – Oct 19	Lectures	ty	Nov 19 – Jan 20	Lectures	ty	Feb - June 20	Lectures	ty
V	Unit-I			Unit-I	1				
	1. Classical Mechanics II	16		1. Classical Mechanics II	14				
	i) Central Force Problem	09	FK	iii) Lagrangian and	14	FK			
				Hamiltonian formulation of					
				Classical Mechanics					
	ii) Mechanics of Ideal Fluid	07	FK						
	2. Special Theory of Relativity	16		2. Special Theory of Relativity	14				
	i) Introduction	04	SN	iii) Vectors and Tensors	08	SN			
	ii) Special Theory of Relativity	12	SN	iv) Invariant Intervals	06	SN			
·	Unit-II			Unit-II					
	1. Quantum Mechanics II	18		1. Quantum Mechanics II	12				
	i) Time dependent and time	05	GDP	iii) Schrodinger Eq. in	12	GDP			
	independent Schrodinger Eqn.			Spherical polar co-ordinate					
	ii) Simple Application of	13	GDP	1					
	Quantum Mechanics								
	2. Atomic Physics	20		2. Atomic Physics	10				
	i) Atomic Spectra	12	SD	iv) Molecular Spectroscopy	04	SD			
·	ii) Vector atom model	05	SD	v) Laser Physics	06	SD			
	iii) Many electron model	03	SD						
			1		1	1	1	1	
Pape	First Term	No of	Facul	Second Term	No of	Facul	Third Term	No of	Facul
r	July 19 – Oct 19	Lectures	ty	Nov 19 – Jan 20	Lectures	ty	Feb - June 20	Lecture	ty
VI	Unit-I			Unit-I					
	1. Nuclear and Particle	30		2. Nuclear and Particle	30				
	Physics I			Physics II					
	i) Bulk properties of Nuclei	06	GDP	i) Nuclear reactions	05	SD			
	ii) Nuclear structure	10	GDP	ii) Nuclear fission and fusion	06	SD			
Ì	iii) Unstable Nuclei			iii) Elementary particles					

	a) Alpha decay	04	GDP	a) Four basic interactions	04	SN	
	b) Beta decay	05	GDP	b) Classifications	05	SN	
	c) Gama decay	05	GDP	iv) Particle accelerator and detector	04	SN	
				v) Nuclear Astrophysics	06	SN	
	Unit-II			Unit-II	00	BIV .	
	1. Solid State Physics I	30		2. Solid State Physics II	30		
	i) Crystal Structure	12	BC	i) Dielectric Property of materials	05	BC	
	ii) Structure of Solids	18	BC	ii) Magnetic properties of materials	12	BC	
				iii) Lattice Vibrations	07	BC	
				iv) Super conductivity	06	BC	
	,						
VIIA	Unit-I			Unit-I			
	1. Statistical Mechanics	16		1. Statistical Mechanics	14		
	i) Microstates and Macrostates	07	SN	iv) Quantum Statistical Mechanics	14	SN	
	ii) Classical Stat. Mach.	03	SN				
	iii) Motivations for Quantum Statistics	06	SN				
	2. Electromagnetic Theory	16		2. Electromagnetic Theory	14		
	i) Generalization of Ampere's law	09	SDR	iii) EM Waves in conducting medium	06	SDR	
	ii) EM Wave in an isotropic dielectric	07	SDR	iv) Dispersion	04	SDR	
İ				v)Scattering	04	SDR	

PHYSICS (GEN.) 2019-20

SEMESTER – I (CBCS)

July 19 – December 19

Paper	General Elective Course - 1	No of Lectures	Facult y	Paper	General Elective Course - 1	No of Lectures	Faculty	Internal Assessment (by College)	Parent Teacher Meeting
	Mechanics (Theory)	60			Mechanics (Practical)	60		3 rd week of November	
	1. Mathematical Methods	15	GDP		1.Moment of inertia of cylinder/bar		SD + FK		
	2. Laws of Motion	05	ВС	PHS-G- CC-1- 1P (GE-1)	2.Y- Modulus of a metal bar				
	3. Work and Energy	05	ВС		3.Rigidity modulus of wire				
PHS- G-CC-	4. Gravitation	10	ВС		4. Moment of Inertia of a flywheel.				1 st week of December
1-1TH	5. Oscillations	05	ВС		5.g using bar pendulum				
(GE-1)	6. Rotational Motion	05	SD		6.The height of a building using sextant				
	7. Elasticity	05	SDR						
	8. Surface Tension	05	SDR	1					
	9. Viscosity	05	SDR						

PHYSICS (GEN.) 2019-20

SEMESTER – II (CBCS)

January 20 – June 20

Paper	General Elective Course - 2	No of Lectures	Faculty	Paper	General Elective Course - 2	No of Lectures	Faculty	Internal Assessment (by College)	Parent Teacher Meeting
	Electricity and Magnetism (Theory)	60			Electricity and Magnetism (Practical)	60			
	Essential Vector Analysis	5	GDP		Determination of unknown resistance by Carey Foster method.				
PHS- G-CC- 2-2TH (GE-2)	2. Electrostatics	25	SN	PHS-G- CC-2-2P (GE-2)	2. Measurement of a current owing through a register using potentiometer.		BC + SD + GDP	3 rd week of November	1 st week o December
	3. Magnetism	15	SD		3. Determination of the horizontal components of earth's magnetic field.				
	4. Electro-magnetic induction	05	ВС		4. Conversion of an ammeter to a voltmeter.				
	5. Electrodynamics	10	ВС		5. Conversion of a voltmeter to an Ammeter.				
					6. Verification of Thevenin & Norton theorem and superposition theorem.				

PHYSICS (GEN.) 2019-20 SEMESTER – III (CBCS)

July 19 – December 19

Paper	General Elective Course - 3	No of Lectures	Faculty	Paper	General Elective Course - 3	No of Lectures	Faculty	Internal Assessment (by College)	Parent Teacher Meeting
	Thermal Physics and Statistical Mechanics (Theory)	60			Thermal Physics and Statistical Mechanics (Practical)	60			
PHS- G-CC-	1. Laws of Thermodynamics	18	GDP	PHS-G- CC-3- 3P (GE-3)	1. Determination of the coefficient of thermal expansion of a metallic rod using an optical lever		GDP + SDR +	3 rd week of November	1 st week of December
3-3TH (GE-3)	2. Thermodynamic Potentials	09	SDR		2. Verication of Stefan's law using a torch bulb.		SN		
	3. Kinetic Theory of Gases	10	BC		3. Calibration of a thermocouple by direct measurement of the thermo-emf using operational amplifier and the constants				
	4. Gravitation	08	SDR		4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.				
	5. Statistical Mechanics	15	SN		5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT).				
					6. Determination of the Pressure coefficient of air using Jolly's apparatus.				

PHYSICS (GEN.) 2019-20

SEMESTER – IV (CBCS)

January 20 – June 20

Paper	General Elective Course - 4	No of Lectures	Faculty	Paper	General Elective Course - 4	No of Lectures	Faculty	Internal Assessment (by College)	Parent Teacher Meeting
	Waves and Optics (Theory)	60			Waves and Optics (Practical)	60			
PHS- G-CC-	Superposition of Two Collinear Harmonic oscillations	05	BC	PHS-G- CC-4-	1. Determination of the refractive index of material of a lens and that of a liquid using a convex lens and a plane mirror.		SN + GDP	3 rd week of November	1 st week of December
4-4TH (GE-4)	Superposition of Two Perpendicular Harmonic Oscillation	05	ВС	4P (GE-4)	2. Determination of the focal length of a concave lens by auxiliary lens method.				
	3. Wave Motion - General	05	ВС		3. Determination of the				
	4. Sound	05	ВС		frequency of a tuning fork with the help of sonometer using n-l curve.				
	5. Wave Optics - General	05	SD		4. Determination of radius				
	6. Interference	05	SD		of curvature / wavelength of a monochromatic / quasi monochromatic light using Newtons ring.				
	7. Michelson's Interferometer	05	SD		5. Measurement of the spacing between the adjacent slits in a grating by measuring $\sin\theta$ vs λ graph of a certain order of grating spectra.				
	8. Diffraction	10	SD		6. Measurement of specific		-		
	9. Polarization	10	SD		rotation of active solution				
	10. Transverse nature of light waves	05	SD		(e.g., sugar solution) using polarimeter.				

				PHYSICS (GENERAL) 201 THIRD YEAR (1+1+1- Syst					
Paper	First Term July 19 – Oct 19	No of Lectures	Faculty	Second Term Nov 19 – Jan 20	No of Lectures	Faculty	Third Term Feb 20- April 20	No of Lectures	Faculty
IVA TH	Unit I: Pumps, Gauges and Engine	10		Unit II: Energy sources	15				
	Production & measurement of high vacuum	5	SDR	Conventional energy sources	5	SDR			
	2. Engines	5	SDR	2. Non- Conventional energy sources	5	SDR			
	Unit III: Electronics	15		Unit IV: Communications	10				
	1. Feedback	5	FK	Propagation of Electromagnetic waves	3	FK			
	2. Digital electronics	5	FK	2. Transmission of	4	FK			

Electromagnetic waves

3. Transmⁿ. through media

3

FK

5

FK

3. Instruments